About Products Protein Database Contact

ap2s1

Gene
ap2s1
Protein
AP-2 complex subunit sigma
Organism
Dictyostelium discoideum
Length
142 amino acids
Function
Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration (By similarity).
Similarity
Belongs to the adaptor complexes small subunit family.
Mass
17.016 kDa
Sequence
MIHFILIQNRQGKTRLSKWYTPYEDVEKRKLSHEIHKIVNSRETKFTNFVEFRTHRIVYRRYAGLFFSVCVDPTDNELFCLEAIHLFVEVLDAYFGNVCELDLVFNFYKVYAIIDEVFLAGELMEPSKHVILQRMEFLDNLP

Gene
AP2S1
Protein
AP-2 complex subunit sigma
Organism
Bos taurus
Length
142 amino acids
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein Transport via Transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif. May also play a role in extracellular calcium homeostasis (By similarity).
Similarity
Belongs to the adaptor complexes small subunit family.
Mass
17.018 kDa
Sequence
MIRFILIQNRAGKTRLAKWYMQFDDDEKQKLIEEVHAVVTVRDAKHTNFVEFRNFKIIYRRYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDLVFNFYKVYTVVDEMFLAGEIRETSQTKVLKQLLMLQSLE

Gene
AP2S1
Protein
AP-2 complex subunit sigma
Organism
Homo sapiens
Length
142 amino acids
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein Transport via Transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). May also play a role in extracellular calcium homeostasis.
Similarity
Belongs to the adaptor complexes small subunit family.
Mass
17.018 kDa
Sequence
MIRFILIQNRAGKTRLAKWYMQFDDDEKQKLIEEVHAVVTVRDAKHTNFVEFRNFKIIYRRYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDLVFNFYKVYTVVDEMFLAGEIRETSQTKVLKQLLMLQSLE

Gene
Ap2s1
Protein
AP-2 complex subunit sigma
Organism
Mus musculus
Length
142 amino acids
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via Transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif. May also play a role in extracellular calcium homeostasis (By similarity).
Similarity
Belongs to the adaptor complexes small subunit family.
Mass
17.018 kDa
Sequence
MIRFILIQNRAGKTRLAKWYMQFDDDEKQKLIEEVHAVVTVRDAKHTNFVEFRNFKIIYRRYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDLVFNFYKVYTVVDEMFLAGEIRETSQTKVLKQLLMLQSLE

Gene
AP2S1
Protein
AP-2 complex subunit sigma
Organism
Pongo abelii
Length
142 amino acids
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein Transport via Transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif. May also play a role in extracellular calcium homeostasis (By similarity).
Similarity
Belongs to the adaptor complexes small subunit family.
Mass
17.018 kDa
Sequence
MIRFILIQNRAGKTRLAKWYMQFDDDEKQKLIEEVHAVVTVRDAKHTNFVEFRNFKIIYRRYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDLVFNFYKVYTVVDEMFLAGEIRETSQTKVLKQLLMLQSLE

Gene
Ap2s1
Protein
AP-2 complex subunit sigma
Organism
Rattus norvegicus
Length
142 amino acids
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein Transport via Transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif. May also play a role in extracellular calcium homeostasis (By similarity).
Similarity
Belongs to the adaptor complexes small subunit family.
Mass
17.018 kDa
Sequence
MIRFILIQNRAGKTRLAKWYMQFDDDEKQKLIEEVHAVVTVRDAKHTNFVEFRNFKIIYRRYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDLVFNFYKVYTVVDEMFLAGEIRETSQTKVLKQLLMLQSLE