About Products Protein Database Contact

KCNK1

Gene
KCNK1
Protein
Potassium channel subfamily K member 1
Organism
Bos taurus
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (By similarity). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity. Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (By similarity). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation. The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (By similarity).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.041 kDa
Sequence
MLQSLAGSSCVRLVERHRSAWCFGFLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFLEEHECLSEPQLEQFLGRVLEASNYGVSVLSNASGNWNWDFTSALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRVTIHVTRRPVLYFHVRWGFSKQAVAIVHAVLLGVVTVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKEEDQMHIIEHDQLSFSSITDQAAGVQEDQKQNEPFVSPQPPALADGASDH

Gene
KCNK1
Protein
Potassium channel subfamily K member 1
Organism
Cavia porcellus
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (By similarity). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity. Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (By similarity). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation. The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (By similarity).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.102 kDa
Sequence
MLQSLAGSSCVRLVERHRSAWCFGLLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFLEEHECLSEPQLEQFLGRVLEASNYGVSVLSNASGNWNWDFTSALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRITVHVTRRPVLYFHIRWGFSKQMVGIVHAVVLGFVTVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKDEDQVHIVEHDQLSFSSITDQAASVKEEQKQSEPFVAAQVSAYAEDSASH

Gene
KCNK1
Protein
Potassium channel subfamily K member 1
Organism
Homo sapiens
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues (PubMed:15820677, PubMed:21653227). Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium (PubMed:21653227, PubMed:22431633). The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (PubMed:8605869, PubMed:8978667, PubMed:15820677, PubMed:21653227, PubMed:22431633, PubMed:23169818, PubMed:25001086). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity (PubMed:23169818). Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (PubMed:23169818). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation (PubMed:15820677, PubMed:20498050, PubMed:23169818). The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (PubMed:19959478).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.143 kDa
Sequence
MLQSLAGSSCVRLVERHRSAWCFGFLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFLEEHECLSEQQLEQFLGRVLEASNYGVSVLSNASGNWNWDFTSALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRITVHVTRRPVLYFHIRWGFSKQVVAIVHAVLLGFVTVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKDEDQVHIIEHDQLSFSSITDQAAGMKEDQKQNEPFVATQSSACVDGPANH

Gene
Kcnk1
Protein
Potassium channel subfamily K member 1
Organism
Mus musculus
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues (PubMed:16847696, PubMed:22431633, PubMed:24368895). Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (PubMed:9013852, PubMed:24496152). Channel activity is modulated by activation of serotonin receptors (PubMed:24368895). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (PubMed:24496152). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity. Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (By similarity). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (PubMed:25406588). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (PubMed:25406588). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (PubMed:24496152). Required for normal ion and water transport in the kidney (PubMed:16025300). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (PubMed:22431633). The low channel activity of homodimeric KCNK1 may be due to sumoylation. The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (PubMed:15540117).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.201 kDa
Sequence
MLQSLAGSSCVRLVERHRSAWCFGFLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFLEEHECLSEPQLEQFLGRVLEASNYGVSVLSNASGNWNWDFTSALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRVTVHVTRRPVLYFHIRWGFSKQVVAIVHAVLLGFVTVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKDEDLVHIMEHDQLSFSSVTEQVAGLKEEQKQSEPFVASQSPPYEDGSADH

Gene
KCNK1
Protein
Potassium channel subfamily K member 1
Organism
Pongo abelii
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels, and upon acidification of the extracellular medium. The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (By similarity). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity. Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (By similarity). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation. The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (By similarity).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.145 kDa
Sequence
MLQSLAGSSCVRLVERHRSARCFGFLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFLEEHECLSEQQLEQFLGRVLEASNYGVSVLSNASGNWNWDFTSALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRITVHVTRRPVLYFHIRWGFSKQVVAIVHAVLLGFVTVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKDEDQVHIIEHDQLSFSSITDQAAGMKEDQKQNEPFVATQSSACMDGPANH

Gene
KCNK1
Protein
Potassium channel subfamily K member 1
Organism
Oryctolagus cuniculus
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (By similarity). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity. Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (By similarity). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation. The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (By similarity).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.076 kDa
Sequence
MLQSLAGSSCVRLVERHRSAWCFGFLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFVEEHECLSEQQLEQFLGRVLEANNYGVSVRSNASGNWNWDFASALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRVTVHVTRRPVLYFHVRWGFSKQVVAIVHAVLLGLITVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKDEDQVHIIEHDQLSFSSITEQAAGMKEDQKQNEPFVATPSSACADGPANH

Gene
Kcnk1
Protein
Potassium channel subfamily K member 1
Organism
Rattus norvegicus
Length
336 amino acids
Function
Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues (PubMed:17452494, PubMed:19571146). Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium (PubMed:22948150). The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel. Channel activity is modulated by activation of serotonin receptors (PubMed:17452494). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity. Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (By similarity). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation. The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (By similarity).
Similarity
Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
Mass
38.228 kDa
Sequence
MLQSLAGSSCVRLVERHRSAWCFGFLVLGYLLYLVFGAVVFSSVELPYEDLLRQELRKLKRRFLEEHECLSEPQLEQFLGRVLEASNYGVSVLSNASGNWNWDFTSALFFASTVLSTTGYGHTVPLSDGGKAFCIIYSVIGIPFTLLFLTAVVQRVTVHVTRRPVLYFHIRWGFSKQVVAIVHAVLLGFVTVSCFFFIPAAVFSVLEDDWNFLESFYFCFISLSTIGLGDYVPGEGYNQKFRELYKIGITCYLLLGLIAMLVVLETFCELHELKKFRKMFYVKKDKDEDQVHIMEHDQLSFSSITEQAAGLKEEQKQNEPFVASQSPPYEDGSANH